106 research outputs found

    ImageCLEF 2013: The vision, the data and the open challenges

    Full text link
    This paper presents an overview of the ImageCLEF 2013 lab. Since its first edition in 2003, ImageCLEF has become one of the key initiatives promoting the benchmark evaluation of algorithms for the cross-language annotation and retrieval of images in various domains, such as public and personal images, to data acquired by mobile robot platforms and botanic collections. Over the years, by providing new data collections and challenging tasks to the community of interest, the ImageCLEF lab has achieved an unique position in the multi lingual image annotation and retrieval research landscape. The 2013 edition consisted of three tasks: the photo annotation and retrieval task, the plant identification task and the robot vision task. Furthermore, the medical annotation task, that traditionally has been under the ImageCLEF umbrella and that this year celebrates its tenth anniversary, has been organized in conjunction with AMIA for the first time. The paper describes the tasks and the 2013 competition, giving an unifying perspective of the present activities of the lab while discussion the future challenges and opportunities.This work has been partially supported by the Halser Foundation (B. C.),by the LiMoSINe FP7 project under grant # 288024 (B. T.), by the Khresmoi (grant# 257528) and PROMISE ( grant # 258191) FP 7 projects (H.M.) and by the tranScriptorium FP7 project under grant # 600707 (M. V., R. P.)Caputo ., B.; Muller ., H.; Thomee ., B.; Villegas, M.; Paredes Palacios, R.; Zellhofer ., D.; Goeau ., H.... (2013). ImageCLEF 2013: The vision, the data and the open challenges. En Information Access Evaluation. Multilinguality, Multimodality, and Visualization. Springer Verlag (Germany). 8138:250-268. https://doi.org/10.1007/978-3-642-40802-1_26S2502688138Muller, H., Clough, P., Deselaers, T., Caputo, B.: ImageCLEF: experimental evaluation in visual information retrieval. Springer (2010)Tsikrika, T., Seco de Herrera, A.G., Müller, H.: Assessing the scholarly impact of imageCLEF. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011)Huiskes, M., Lew, M.: The MIR Flickr retrieval evaluation. In: Proceedings of the 10th ACM Conference on Multimedia Information Retrieval, Vancouver, BC, Canada, pp. 39–43 (2008)Huiskes, M., Thomee, B., Lew, M.: New trends and ideas in visual concept detection. In: Proceedings of the 11th ACM Conference on Multimedia Information Retrieval, Philadelphia, PA, USA, pp. 527–536 (2010)Villegas, M., Paredes, R.: Overview of the ImageCLEF 2012 Scalable Web Image Annotation Task. In: CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy (2012)Zellhöfer, D.: Overview of the Personal Photo Retrieval Pilot Task at ImageCLEF 2012. In: CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy (2012)Villegas, M., Paredes, R., Thomee, B.: Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain (2013)Zellhöfer, D.: Overview of the ImageCLEF 2013 Personal Photo Retrieval Subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain (2013)Leafsnap (2011)Plantnet (2013)Mobile flora (2013)Folia (2012)Goëau, H., Bonnet, P., Joly, A., Bakic, V., Boujemaa, N., Barthelemy, D., Molino, J.F.: The imageclef 2013 plant identification task. In: ImageCLEF 2013 Working Notes (2013)Pronobis, A., Xing, L., Caputo, B.: Overview of the CLEF 2009 robot vision track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 110–119. Springer, Heidelberg (2010)Pronobis, A., Caputo, B.: The robot vision task. In: Muller, H., Clough, P., Deselaers, T., Caputo, B. (eds.) ImageCLEF. The Information Retrieval Series, vol. 32, pp. 185–198. Springer, Heidelberg (2010)Pronobis, A., Christensen, H.I., Caputo, B.: Overview of the imageCLEF@ICPR 2010 robot vision track. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 171–179. Springer, Heidelberg (2010)Martinez-Gomez, J., Garcia-Varea, I., Caputo, B.: Overview of the imageclef 2012 robot vision task. In: CLEF 2012 Working Notes (2012)Rusu, R., Cousins, S.: 3d is here: Point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: International Conference on Computer Vision, pp. 1–8. Citeseer (2007)Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Linde, O., Lindeberg, T.: Object recognition using composed receptive field histograms of higher dimensionality. In: Proc. ICPR. Citeseer (2004)Orabona, F., Castellini, C., Caputo, B., Luo, J., Sandini, G.: Indoor place recognition using online independent support vector machines. In: Proc. BMVC, vol. 7 (2007)Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent support vector machines. Pattern Recognition 43, 1402–1412 (2010)Orabona, F., Jie, L., Caputo, B.: Online-Batch Strongly Convex Multi Kernel Learning. In: Proc. of Computer Vision and Pattern Recognition, CVPR (2010)Orabona, F., Jie, L., Caputo, B.: Multi kernel learning with online-batch optimization. Journal of Machine Learning Research 13, 165–191 (2012)Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 cross-language image retrieval track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.: The CLEF 2005 cross–language image retrieval track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)Müller, H., Deselaers, T., Deserno, T., Clough, P., Kim, E., Hersh, W.: Overview of the imageCLEFmed 2006 medical retrieval and medical annotation tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 595–608. Springer, Heidelberg (2007)Müller, H., Deselaers, T., Deserno, T., Kalpathy–Cramer, J., Kim, E., Hersh, W.: Overview of the imageCLEFmed 2007 medical retrieval and medical annotation tasks. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 472–491. Springer, Heidelberg (2008)Müller, H., Kalpathy–Cramer, J., Eggel, I., Bedrick, S., Radhouani, S., Bakke, B., Kahn Jr., C.E., Hersh, W.: Overview of the CLEF 2009 medical image retrieval track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009, Part II. LNCS, vol. 6242, pp. 72–84. Springer, Heidelberg (2010)Tommasi, T., Caputo, B., Welter, P., Güld, M.O., Deserno, T.M.: Overview of the CLEF 2009 medical image annotation track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 85–93. Springer, Heidelberg (2010)Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experimental Evaluation in Visual Information Retrieval. The Springer International Series on Information Retrieval, vol. 32. Springer, Heidelberg (2010)Kalpathy-Cramer, J., Müller, H., Bedrick, S., Eggel, I., García Seco de Herrera, A., Tsikrika, T.: The CLEF 2011 medical image retrieval and classification tasks. In: Working Notes of CLEF 2011 (Cross Language Evaluation Forum) (2011)Müller, H., García Seco de Herrera, A., Kalpathy-Cramer, J., Demner Fushman, D., Antani, S., Eggel, I.: Overview of the ImageCLEF 2012 medical image retrieval and classification tasks. In: Working Notes of CLEF 2012 (Cross Language Evaluation Forum) (2012)García Seco de Herrera, A., Kalpathy-Cramer, J., Demner Fushman, D., Antani, S., Müller, H.: Overview of the ImageCLEF 2013 medical tasks. In: Working Notes of CLEF 2013 (Cross Language Evaluation Forum) (2013

    β-Catenin is a pH sensor with decreased stability at higher intracellular pH.

    Get PDF
    β-Catenin functions as an adherens junction protein for cell-cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein-protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R-β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation

    Dynamic Bayesian network for semantic place classification in mobile robotics

    Get PDF
    In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM

    Combining Image Invariant Features and Clustering Techniques for Visual Place Classification

    No full text

    COLD: The CoSy localization database

    Get PDF
    Two key competencies for mobile robotic systems are localization and semantic context interpretation. Recently, vision has become the modality of choice for these problems as it provides richer and more descriptive sensory input. At the same time, designing and testing vision-based algorithms still remains a challenge, as large amounts of carefully selected data are required to address the high variability of visual information. In this paper we present a freely available database which provides a large-scale, flexible testing environment for vision-based topological localization and semantic knowledge extraction in robotic systems. The database contains 76 image sequences acquired in three different indoor environments across Europe. Acquisition was performed with the same perspective and omnidirectional camera setup, in rooms of different functionality and under various conditions. The database is an ideal testbed for evaluating algorithms in real-world scenarios with respect to both dynamic and categorical variations

    Confidence-based cue integration for visual place recognition

    No full text
    Abstract — A distinctive feature of intelligent systems is their capability to analyze their level of expertise for a given task; in other words, they know what they know. As a way towards this ambitious goal, this paper presents a recognition algorithm able to measure its own level of confidence and, in case of uncertainty, to seek for extra information so to increase its own knowledge and ultimately achieve better performance. We focus on the visual place recognition problem for topological localization, and we take an SVM approach. We propose a new method for measuring the confidence level of the classification output, based on the distance of a test image and the average distance of training vectors. This method is combined with a discriminative accumulation scheme for cue integration. We show with extensive experiments that the resulting algorithm achieves better performances for two visual cues than the classic single cue SVM on the same task, while minimising the computational load. More important, our method provides a reliable measure of the level of confidence of the decision. I
    • …
    corecore